
 Henry Lowe



 
The Swift Language Handbook 

An Introduction and Guidebook for 
Pascal Programmers 

Copyright © 2023 by Henry Lowe 

      All Rights Reserved. This book was published by the 
author Henry Lowe under Ascriva Press. No part of this 

book may be reproduced in any form by any means 
without the express written permission of the author. This 
includes reprints, excerpts, photocopying, recording, or 

any future means of reproducing text. 

If you would like to do any of the above, please seek 
permission !rst by contacting the author at 

hlowe@ascriva.com 

Published in the United States by 
Ascriva Health Informatics LLC, Stanford, California.  

www.ascriva.com 
 



Preface  .........................................................................1
Origins of This Book  ...................................................................1

The Pascal Programming Language  ............................................2

The Swift Programming Language  ..............................................3

Tools and References  .................................................3
The Swift Playgrounds App  .........................................................3

Code Examples  ............................................................................4

Swift’s Print() Statement  .............................................................5

References  ...................................................................................6

1 Introduction  .............................................................7
1.1 The Form of a Program  .........................................................7

1.2 Declaration  .............................................................................9

1.2.1 Case Sensitivity  ..............................................................9

1.2.2 Constants  ......................................................................10

1.2.3 Variables  .......................................................................12

1.2.4 Constant and Variable Names  .......................................13

2 Operators  ...............................................................15
2.1 Assignment  ..........................................................................15

2.2 Equality  ................................................................................15

2.3 Non-Equality  .......................................................................16

2.4 Arithmetic Operators  ...........................................................17

2.4 Logical Operators  ................................................................19

2.5 Range Operators  ..................................................................21

3 Data Types  .............................................................24
3.1 Numbers  ...............................................................................24

3.1.1 Integer  ...........................................................................24



3.1.2 Floating Point Number  .................................................25

3.1.3 Numeric Type Conversion  ............................................26

3.1.4 Rounding  ......................................................................26

3.1.5 Truncation  .....................................................................28

3.1.6 Generating Random Numbers  ......................................28

3.1.7 Numeric Functions  .......................................................29

3.1.8 Converting Numbers to Strings  ....................................30

3.2 Booleans  ..............................................................................31

3.3 Strings and Characters  .........................................................32

3.3.1 Character Declaration  ...................................................32

3.3.2 String Declaration  .........................................................33

3.3.3 String Literals  ...............................................................34

3.3.4 String Length  ................................................................37

3.3.5 String Character Indices  ...............................................38

3.3.6 String Concatenation  ....................................................43

3.3.7 String Comparison  ........................................................45

3.3.8 String Interpolation  .......................................................46

3.3.9 String Insertion and Removal  .......................................47

3.3.10 String Search  ...............................................................50

3.3.11 String Replace  .............................................................51

3.3.12 String Split  ..................................................................52

3.3.13  Substrings  ..................................................................53

3.4 Arrays  ...................................................................................54

3.4.1 Declaration  ....................................................................55

3.4.2 Initialization  ..................................................................55

3.4.3 Element Operations  ......................................................56

3.4.4 Searching an Array  .......................................................59



3.4.5 Sorting an Array  ............................................................65

3.5 Sets  ......................................................................................66

3.5.1 Declaration  ....................................................................67

3.5.3 Set Operations  ...............................................................68

3.5.4 Sorting a Set  ..................................................................70

3.6 Dictionaries  ..........................................................................70

3.6.1 Declaration  ....................................................................71

3.6.2 Adding and Deleting Entries  .........................................72

3.6.3 Optionals  .......................................................................73

3.6.4 Iteration  .........................................................................76

3.6.5 Sorting Entries  ..............................................................77

3.6.6 Searching Dictionaries  ..................................................77

3.7 Records and Structures  ........................................................80

3.7.1 Declaration  ....................................................................81

3.7.2 Property Values  .............................................................83

3.7.3 Instance Methods  ..........................................................85

3.8 Enumeration  .........................................................................86

3.8.1 Declaration  ....................................................................87

3.9 Type Alias  ............................................................................93

4 Control Flow  ..........................................................94
4.1 If Statement  ..........................................................................94

4.2 If Then Else Statement  ........................................................95

4.3 Guard Statement  ..................................................................97

4.4 Switch Statement  .................................................................99

4.5 Repeat Loops  .....................................................................101

4.6 Repeat While Loops  ..........................................................105

4.7 Control Transfer Statements  ..............................................107



4.7.1 Break Statement  ..........................................................107

4.7.2 Continue Statement  .....................................................108

4.7.3 Fallthrough Statement  .................................................109

5 Functions and Procedures  .................................110
5.1 Function Definition  ............................................................112

5.2 Calling Swift Functions  .....................................................113

5.3 Argument Labels  ................................................................113

5.4 Return Values  .....................................................................115

5.5 Function Parameters  ..........................................................115

5.5.1 Variadic Parameters  ........................................................117

5.6 Emulating Pascal Procedures  .............................................118

5.7 Tuples  ................................................................................121

5.8 Mutating Functions  ............................................................124

5.9 Generic Functions  ..............................................................127

5.10 Defer  ................................................................................128

6 File Management  ................................................129
6.1 URL  ...................................................................................130

6.6.1 Declaration  ..................................................................131

6.6.2 Methods  ......................................................................133

6.3 FileManager  .......................................................................135

6.3.1 Declaration  ..................................................................135

6.3.2 Methods  ......................................................................135

6.3.3 Functions & Methods  .................................................137

6.4 Data  ....................................................................................140

6.4.1 Declaration  ..................................................................140

6.4.2 Iteration  .......................................................................141



6.4.3 Reading and Writing Data Files  ..................................141

6.4.4 Splitting  ......................................................................142

7 Error Handling  .....................................................143
7.1 Throw Statement  ................................................................143

7.2 Do-Catch Statement  ...........................................................145

7.3 Using Optionals  .................................................................146

8 Extensions  ............................................................149
9 Modules  ...............................................................153

9.1 Access Control  ...................................................................153

10 Protocols  ............................................................156
Index  ........................................................................160
About the Author ...................................................177



Preface 

Origins of This Book 

I !rst programed in Pascal in 1982, using Apple UCSD Pascal 
for the Apple II family of computers.  I was fascinated by 
Pascal’s support for structured programming, signi!cantly 
enhancing the design, implementation, and maintenance of 
code. The ability to create rich user-de!ned data types in 
Pascal was also a powerful feature of the language. At the 
time, Pascal impressed me as an elegant, compact, 
intuitive, and extensible language. It was also a “safe” 
language because of strong type checking and sparse use of 
pointers.  

In 1982 I discovered Randy Clarke and Stephen Koehler’s 
wonderful book: The UCSD Pascal Handbook - A Reference 
and Guidebook for Programmers. Using this well-designed 
book, one could quickly review UCSD Pascal’s features, 
language and syntax -  plus code examples. As I began 
using the Swift programming language 40 years later, I 
yearned for a similar short reference guide. 

Not !nding one that met my needs, I decided to create this 
book, which is designed to help those familiar with Pascal 
begin exploring Swift. Where possible, I have tried  to 

 1

https://en.wikipedia.org/wiki/Apple_Pascal
http://pascal.hansotten.com/uploads/ucsd/ucsd/ucsdhandbook.pdf


demonstrate how these two elegant languages intersect, 
hopefully creating a conceptual bridge between them. 

This book is not intended to be a comprehensive reference 
guide to Swift. Nor does it cover all aspects of the Swift 
language. Instead, it attempts to map the core concepts of 
Standard Pascal to the equivalent language concepts in 
Swift to hopefully facilitate that “Aha!” moment when one 
gets a !rm conceptual foothold on a new programming 
paradigm.  

The Pascal Programming Language 

The Pascal programming language was designed by 
Nicklaus Wirth at the Federal Institute of Technology in 
Zürich, Switzerland, in 1970. Pascal is descended from the 
Algol programming language, which was !rst described in 
1958. By the 1980’s Pascal had become the standard 
programming language used to teach college-level 
computer science. It evolved to become an object-oriented 
language (Object Pascal) and was used in the development 
of the original Apple Macintosh. In time, Pascal was 
eclipsed by other languages, particularly C, C++, Objective-
C and Java. Pascal lives on today as Delphi Pascal and the 
Free Pascal Compiler (FPC). 

 2

https://en.wikipedia.org/wiki/Delphi_(software)
https://en.wikipedia.org/wiki/Free_Pascal


The Swift Programming Language 

Swift is a compiled general-purpose object-oriented 
programming language developed by Apple Inc. and the 
open-source community. Development of Swift began at 
Apple in 2010 by Chris Lattner, with the eventual 
collaboration of many other programmers. Swift was 
designed to replace Apple's earlier programming language 
Objective-C, which lacked many modern language features. 
Swift was !rst released in 2014 and, at the time of writing 
(April 2023), is at version 5.8, supporting all Apple 
platforms and Linux. 

Henry Lowe 
Stanford 2023 

Tools and References 

The Swift Playgrounds App 

To experiment with the Swift code examples in this book I 
recommend installing Apple’s Playgrounds app for Mac and 
iPad. Playgrounds provides an interactive Read Eval Print 
Loop (REPL) environment into which you type Swift code 
and get instant feedback. 

 3

https://en.wikipedia.org/wiki/Chris_Lattner
https://www.apple.com/swift/playgrounds/


Launch the Playgrounds app and select ‘New Blank 
Playground’ from the Mac File Menu or tap ‘+ Playground’ 
in the iPad version of the app. This gives you a new empty 
playground into which you can enter Swift code. Entering 
‘import Foundation’ as the !rst line of the playground 
ensures that Swift’s Foundation framework is available 
when you use the examples in this book. 

Code Examples 

Throughout this book you will !nd illustrative code 
examples. 

Pascal code examples are printed as plain text, e.g: 

Program Hello; 
Var Greeting:String; 
Begin 

Greeting:=‘Hello world'; 
Writeln(Greeting); 

End. 

Swift code examples are displayed within a colored text 
box: 
 

 4

let greeting = "Hello world"
print(greeting)



Swift’s Print() Statement 

Swift’s print() statement is used in the code examples 
throughout this book. The print() statement sends output 
to the console. If you are using the Playgrounds app to 
experiment with Swift, the print() statement is a useful way 
to display constants, variables and data in the console pane 
of a playground window. For example, enter ‘print(“Hello 
world!”)’ And the text ‘Hello world’ is displayed in the 
playground’s console pane. 
  
When using Swift’s print() statement all non-string variables 
are converted to strings automatically.  

The full de!nition of print() is: 

 print(items, separator, terminator) 

The ‘items’ parameter contains what we wish to display 
either as a literal, constant, variable or expression.  

The optional ‘separator’ parameter de!nes the character 
used to separate multiple items within print(). The default 
separator is a single space character. 

 5



The optional ‘terminator’ parameter de!nes the character 
used to terminate the display output. The default 
terminator is new line character “\n”.  Alternatives include: 
the tab character “\t” and the space character. 

We can use these optional print() parameters as: 

References 

The de!nitive Swift reference is Apple’s ‘The Swift 
Programming Language’, which is available for free from 
the Apple Bookstore using Apple’s Books app. I highly 
recommend using this book as your standard Swift 
reference. 

Online Swift documentation is available on the Apple 
Developer Site (subscription required) - https://
developer.apple.com/documentation/swift/ and on the 
(free) Swift Open Source site at https://www.swift.org. 

 6

let word1 = "hello"
let word2 = "world"
print(word1,word2,separator:"-",terminator:"\t")
// displays hello-world

https://developer.apple.com/documentation/swift/
https://developer.apple.com/documentation/swift/
https://developer.apple.com/documentation/swift/
https://www.swift.org/


1 Introduction 

P ascal and Swift share many core conceptual 
features.  

1.1 The Form of a Program 

A Pascal program has the general structure shown below: 

Program HelloWorld; 
   Var (* Declare a variable *) 
       Greeting: String; 
Begin 
   Greeting:=‘Hello World’; 
   Writeln(Greeting); 
End. 

A Swift program may be written as:  

Let’s start with some obvious di#erences in the example:  
Unlike Pascal, Swift has no construct to indicate the start of 
a program. A Swift program begins with the !rst line of 
code, in this case: var greetings: String.  

 7

var greeting: String //Declare a variable
greeting = "Hello World"
print(greeting)



Pascal requires that statements end with a semicolon. This 
is not a requirement in Swift. However, a semicolon can be 
used to separate multiple statements written in the same 
line of Swift source code. While Swift does not require a 
semicolon after each statement, you can use one if you 
wish. 

A major di#erence between Pascal and Swift is Swift ’s (and 
many other modern languages) use of ‘curly braces’ i.e. { } 
to de!ne blocks of code. A code block is a scope (i.e., the 
set of all variable-name bindings visible to the compiler 
within a part of a program) that determines the lifetime of 
variables declared within the block. Variables declared 
within a block are not valid when control exits the block. 
Curly braces are also used to de!ne the beginning and end 
of logical programming structures such as loops. Pascal 
uses Begin and End statements to de!ne blocks of code. 
More on the use of curly braces later.  

A single line comment in Swift begins with // and multi-line 
comments begin with /* and end with */. In Pascal source 
code comments can be enclosed in ‘curly brackets’ or 
parentheses e.g.:  {Comment} (* Comment *). 

 8



1.2 Declaration 

All variables in a Pascal program have a speci!c type. Some 
types are built into the language, while others are user-
de!ned. Swift follows a similar model. 

1.2.1 Case Sensitivity 

Pascal is a case-insensitive language. You can use all upper 
case, all lower case or a mix of cases when writing Pascal 
code. Identi!ers, constants, and variables are also case-
insensitive. One consequence of this is that in Pascal the 
variable ‘MyVariable’ and ‘myVariable’ reference the same 
data. 

Swift is a case-sensitive language: ‘MyVariable’ and 
‘myVariable’ are two completely di#erent variables. 

One common problem that Pascal programmers encounter 
when starting to use Swift is forgetting to use the correct 
case when entering identi!ers. Most Swift commands are 
all lower case. For example, use ‘print’ not ‘Print’ or 
‘PRINT’: 

 9

print("Hello World") // is fine
Print("Hello World") // fails - uppercase ‘P’



Swift’s built-in data types are written with the initial 
character in uppercase e.g.: String, Int, Double, Bool, Array 
etc.  

1.2.2 Constants 

Constants are declared once in a program and their value 
cannot be changed during program execution. Constants 
can be declared anywhere in a program, but they must be 
declared before they are referenced. In Pascal constants are 
declared using the Const keyword: 

Const 
Dozen = 12; 
Pi = 3.14159; 
ErrMessage = ‘An error occurred’; 

Swift does not use the Const keyword but instead declares 
constants using the ‘let’ keyword e.g 

 10

let Dozen = 12
let Pi = 3.14159
let errMessage = "An error occurred"



As in Pascal, Swift does not require that you de!ne a 
constant’s type, but you can if you wish. This is referred to 
as ‘Type Annotation’: 
 

In Swift multiple constants can be declared on a single line 
separated by commas e.g:  

                                  Or 

As in Pascal, Swift also allows the use of expressions in 
constants: 

In Swift, for performance reasons, it is recommended that 
you use constants to hold data that will not change during 
program execution. 

 11

let Dozen: Int = 12
let Pi: Double = 3.14159
let errMessage: String = "An error occured"

let minValue = 1,  maxValue = 31

let minValue: Int = 1,  maxValue: Int = 99

let square2 =  2 * 2



1.2.3 Variables 

In Swift (as in Pascal) a variable’s value can be changed 
during program execution. Variables must be declared 
before they are referenced. Swift variables are declared as: 

Note that Swift variable declarations do not require ending 
the declaration with a semicolon, as is the case in Pascal, 
though you can add a semicolon if you so desire.  

In Swift the following variable declarations are legal: 

In Swift it is usually not necessary (or required) to declare 
the variable type (Type Annotation), as the Swift compiler 
can usually infer the type from the declaration (Type 
Inference).  The following variable declarations are legal: 

 12

var userName: String 
var userName: String;

var greetingMessage = “Hello World” 
var startValue = 10

var userName: String
var startValue: Int = 100
var mean, median, mode: Int



Once a variable or constant has been declared to hold 
values of a speci!c type, you cannot redeclare that constant 
or variable later in the program to hold values of a di#erent 
type.  

1.2.4 Constant and Variable Names 

Swift constant and variable names can contain almost any 
character, including Unicode characters e.g.: 

Variable names cannot start with a number. Names cannot 
contain whitespace characters, math symbols, arrows, 
private-use Unicode scalar characters or line and box-
drawing characters. 

It is recommended (for readability purposes) to use a 
‘Camel case’ naming convention when naming constants 
and variables in Swift. Camel case uses a lowercase letter 
for the !rst character of the !rst ‘word’ in a variable name 
followed by a capital letter for each subsequent ‘word’ e.g: 

 13

let !  = "Frog"

var myVariableName: String



Pascal programmers often use a similar convention, called 
‘Pascal Case’ - in which the !rst character of a constant or 
variable name made of compound words is upper case – as 
opposed to lower case in Swift. 

Var: MyFileName: String; – Pascal Case 

var myFileName: String – Camel Case in Swift 

Constant and variable names in Swift can be of any length 
and all characters are signi!cant. As Swift is a case-sensitive 
language the following are considered separate variables: 
  

 14

var MYVARIABLENAME: String
var myvariablename: String
var myVariableName: String



2 Operators 

P ascal and Swift support a similar set of operators, 
though with di#erent syntax.  

2.1 Assignment 

Pascal uses the ‘:=‘ operator for assignment. For example: 

Var Int1: Integer; 
Int1:=42; 

Swift uses the ‘=’ operator for assignment. For example: 

2.2 Equality 

The equality operator in Pascal is ‘=’. For example: 

If int1 = int2 then … 

 15

var int1,int2,int3:Int
int1 = 42



In Swift the equality operator is ‘==‘, e.g.: 

2.3 Non-Equality 

In Pascal we test for non-equality using the ‘<>’ operator: 

If int1 <> int2 then … 

In Swift we test for non-equality using the ‘!=’ operator: 

 16

var int1,int2:Int
int1 = 1; int2 = 1
if int1 == int2 {
    let equal = true } 

var int1,int2:Int
int1 = 1
int2 = 1
if int1 != int2 {
    let equal = false
} 



In both Pascal and Swift to test if one variable is less than 
another we use the ‘<‘ operator, and use the ‘>’ operator to 
test if one variable is greater than another: 
 

The Greater Than Or Equals To operator ‘>=‘ and the Less 
Than Or Equals To operator ‘<=‘ are also the same in both 
Pascal and Swift. 

2.4 Arithmetic Operators 

Pascal and Swift use the same operators for addition ‘+’, 
subtraction ‘-‘, division ‘/‘ and multiplication ‘*’: 

 17

var int1,int2:Int
int1 = 1
int2 = 1
if int1 > int2 {
    let greaterThan = false
} 

var int1,int2,int3:Int
int1 = 1
int2 = 1
int3 = (int1 + int2) * (int2 / int1) - int1 



The Remainder operator returns the remainder when one 

number is divided by another. In Pascal this is called ‘Mod’, 
which is short for Modulo: 
Swift uses the Remainder operator ‘%’ in a similar fashion:  

In both Pascal and Swift one can change the sign of a 
number by pre!xing a numeric value with the ‘-’ operator 
(the Unary Minus Operator). This operator toggles the sign 
of a number: 

The Unary Plus Operator ‘+’ does not change the sign of the 
number and its inclusion in both Pascal and Swift appears 
to be for symmetry. 

 18

Int3:=int2 Mod Int1;

var int1,int2,int3:Int 
int3 = int2 % int1

var int1:Int
int1 = 1
int1 = -int1 // int1 = -1
int1 = -int1 // int1 = 1 



2.4 Logical Operators 

Both Pascal and Swift support the Logical Operators AND, 
OR and NOT: 

The AND operator is ‘AND’ in Pascal and ‘&&’ in Swift. 

In Pascal: 

Var Bool1,Bool2:Boolean; 
Bool1:=True; 
Bool2:=False; 
If Bool1 AND Bool2 then 
   Writeln(‘True’) 
 Else 
    Writeln(‘False’); 

  
In Swift: 
 

  
  

The OR operator is ‘OR’ in Pascal and ‘||’ in Swift. 

 19

var bool1:Bool = true
var bool2:Bool = false

if bool1 && bool2 {
    print ("True")
}    else  {
    print ("False")
}



In Pascal: 

Var Bool1,Bool2:Boolean; 
Bool1:=True; 
Bool2:=False; 
If Bool1 OR Bool2 then 
   Writeln(‘True’) 
 Else 
    Writeln(‘False’); 

In Swift: 
 

  

The NOT operator is ‘NOT’ in Pascal and ‘!’ in Swift. 

In Swift Logical NOT is a pre!x operator (i.e., appears just 
before the value it operates on, without whitespace) that 
toggles a Boolean value. 
 

  
In Pascal NOT is used in a similar fashion: 

Bool1:=False; 
Bool2:=Not Bool1; {Bool2 is True} 

 20

if bool1 || bool2 {
    print ("True")
}    else  {
    print ("False")
}

let bool1 = false
let bool2 = !bool1 // bool2 = true



2.5 Range Operators 

Swift includes several range operators that de!ne a range of 
values. The closest equivalent construct in Pascal are 
subranges. In Pascal we can de!ne a type, constant or 
variable as a subrange of any scalar type. For example: 

digits = 0..9; (* Subrange of Integer *) 
Grade = “A,B,C,D,E,F” (* User-defined type *) 
pass = ‘A’..’C’; (* Subrange of Grade *) 

Pascal may also use subranges when de!ning arrays: 

myArray[1..99] of String; 

Swift’s Closed Range Operator (‘x…y’) de!nes a range 
extending from the value of x to the value of y. For 
example, 2…7 is a range of integers from 2 to 7.  The value 
of x must not be greater that the value of y. Note the three 
periods used by Swift as opposed to the two periods used in 
Pascal. 

Swift’s Half-Open Range Operator (x..<y) de!nes a range 
starting with the value of x but not including the value of y. 
For example, 2..<7 is a range of integers starting with 2 and 
ending with 6. This type of range operator is useful when 
working with zero-based lists, such as Swift arrays. The 

 21



value of x must not be greater that the value of y. Note the 
use of two periods in this type of range. 

Swift’s One-Sided Range operator de!ne a range that starts 
with a value and extend as far as possible beyond that start 
value. For example, if an array contains 100 members, e.g. 
Array[0..99] then the One-Sided Range [9…] will include 
the array members Array[9] to Array[99]. We can also use a 
form of the One-Sided Range in which the left side of the 
range is unde!ned, e.g. […9] would reference array 
members 0 to 9. 

Ranges are often used in Swift for-in loops. In Pascal we 
might de!ne a for-loop as: 

for index:= 1 to 9 
  writeln(index); 

In Swift we can iterate in a similar fashion using ranges: 
 
  

 22

var index1,index2,index3: Int
var myArray: [Int] = [1,2,3,4,5]
for index1 in 1...9 {
    print(index1) }
for index2 in 1..<10 {
    print(index2) }   
for index3 in myArray[1...] {
    print(myArray[index3]) }



Because Swift ranges are a type, there are range properties 
and methods that we can use: 
 
  

Swift also supports comparing ranges: 
 

  
  

We can also check if ranges overlap: 

   

 23

let myRange = 0...9
print(myRange.contains(5)) //true
print(myRange.lowerBound) // 0
print(myRange.upperBound) // 9
print(myRange.isEmpty) //false

let myRange = 0...9
let anotherRange = 1...8
print(myRange == anotherRange) //false
print(myRange !=  anotherRange) //true 

print(myRange.overlaps(anotherRange)) //true



Index 

A 
Absolute value of a number, 29 
Access Control, 153 

Fileprivate, 155 
Internal, 154 
Open, 154 
Private, 155 
Public, 154 

Algol programming language, 1 
And, 19 
Array, 21, 54, 63, 70, 71, 72 

Accessing all elements, 59 
Appending new elements, 57 
Changing elements, 58 
Counting elements, 57 
Declaration, 55 
Determining if empty, 57 
Element operations, 56 
Filtering, 64 
Index, 56 
Initialization, 55 
Inserting elements, 57 
Obtaining element index and value, 59 
Removing elements, 58 
Retrieving elements, 58 
Searching, 59 
Shu$e, 66 
Zero-indexed, 55 

 160



Assignment, 15 
Associative Array, 70 

B 
Bool type in Swift, 31 
Booleans, 31 
Break statement, 107 
Break to label, 108 

C 
Case sensitivity, 9 
Ceil(), 26 
Chaining of methods, 133 
Change the sign of a number. See Operators, Unary Minus 
Character, useful methods, 33 
Characters, 32 
Closures, 78 
Code block, de!nition, 8 
Comments, in source code, 8 
ComparisonResult, 46, 61 
Constant and variables, naming, 13 
Constants, 10 
Continue statement, 108 
Control Flow, 94 
Control transfer statements, 107 
Converting Numbers to Strings, 30 
Cubed root of a number, 29 
Curly braces { }, 8 

 161



D 
Data 

Declaration, 140 
Iteration, 141 
Reading and writing data !les, 141 
Splitting, 142 

Data type, 140 
Data types, 9 
Data Types 

Double, 25 
Float, 25 
Floating point numbers, 25 
Uint, 25 

Defer statement, 128 
Delphi Pascal, 1 
Dictionary 

Adding entries, 72 
Case sensitivity, 77 
Changing entries, 72 
Converting to array, 76 
Counting key-value pairs, 77 
Creating from arrays, 72 
Declaration, 71 
De!nition, 70 
Display values, 74 
Empty, 71 
Extensions, 78 
Iteration, 76 
Removing keys, 75 
Removing key-value pair, 75 
retrieving key list, 76 

 162



Retrieving value list, 76 
Searching, 77 
Sorting keys and values, 77 
Subscript syntax, 72 
Subscripts, 72 
Updating entries, 73 

Do-Catch Statement, 145 
Double, 25 

E 
Emulating Pascal procedures, 118 
eNum, 46 
Enum 

AllCases, 88 
Associated values, 89 
Case, 86 
CaseIterable, 88 
Count cases, 88 
Creating new constants or variables from, 88 
Declaration, 87 
De!nition, 86 
Dot notation, 88 
List case labels, 88 
Raw values, 89 
Using collection properties with, 91 

enumeration. See enum 
Enumerations. See eNum 
Equality, 15 
Error Handling, 143 
Error handling with optionals, 146 
Error Protocol, 143 

 163



Exponential function, 30 
Extension Keyword, 150 
Extensions, 149 

F 
Fallthrough statement, 109 
File Management, 129 
Filemanager 

Creating a new directory, 138 
Creating a new !le, 139 
Declaration, 135 
Description, 135 
Methods and properties, 135 
Obtaining path to directory, 136 
Obtaining path to Documents directory, 136 
Reading a !le, 140 
User domain mask, 137 
Writing to a !le, 139 

FileManager, 135 
Fileprivate access level, 155 
Float, 25 
Floating point numbers, 25 
Floor(), 27 
Free Pascal Compiler, 1 
Func. See Function 
Function 

Ampersand '&', 120 
Arguement labels, 113 
Calling, 113 
Calling without parameters, 115 
Defer, 128 

 164



De!nition, 112 
Generic, 127 
Inout keyword, 118 
Mutating, 124 
Parameter with multiple values, 117 
Parameters, 115 
Return keyword, 115 
Return values, 115 
Throwing, 143 
Type parameter, 127 
Using default parameter values, 116 
Variadic parameters, 117 

Functions and procedures, 110 

G 
Generic functions, 127 
Generics, 54 
Goto. See  Break 
Guard Statement, 97 

H 
Hash Table, 70 
Hash value, 71 
Hashable, 71 

I 
If Statement, 94 
If Then Else Statement, 95 
Import Foundation, 36 
Import Keyword, 153 

 165



Integer, 24 
Internal access level, 154 

J 
JSON, 142 

K 
Key-value pair, 75 

L 
Lattner, Chris, 1 
Let, 10 
Logarithm, 30 
Logical Operators, 19 
LowerCamelCase, 82 

M 
Mod. See Operators, Remainder 
Modules, 153 
Modulo. See Operators, Remainder 
Mutating methods, 86 

N 
Namespace, 153 
Non-equality, 16 
Not, 20 
Numbers, 24 

Absolute value, 29 
Convert to String, 31 

 166



Exponential function, 30 
Random, 28 
Rounding, 26 
Rounding down, 27 
Rounding rules, 27 
Rounding up. See Ceil() 
Rounding, decimal places, 27 
Square, 30 
Square root, 29 
Truncation, 28 

O 
Objective-C, 1 
Open access level, 154 
Operators 

Addition, 17 
And, 19 
Arithmetic, 17 
Assignment, 15 
Division, 17 
Equality, 15 
Logical, 19 
Multiplication, 17 
Non-equality, 16 
Not, 20 
Or, 19 
Range, 21 
Remainder, 18 
Subtraction, 17 
Unary Minus, 18 
Unary Plus, 18 

Optionals, 41, 73, 74, 75, 123 
 167



Or, 19 

P 
parameters, 118 
Pascal 

Access control, 154 
Apple UCSD Pascal, 2 
Arrays, 54 
Begin .. End, 95 
Boolean, 31 
Break, 107 
Case, 99 
Case sensitivity, 9 
Char, 32 
Code blocks, 95 
Code examples, 4 
Comments, source code, 8 
Concat, 36 
Constants, 10 
Control Flow, 94 
Copy, 36 
Data types, 24 
Declaration, 9 
Delete, 47 
Delphi, 1 
Down to, 103 
Emulating procedures in Swift, 118 
File, 129 
File management, 129 
For, 102 
Free Pascal Compiler, 1 
Functions, 110 

 168



Goto, 107 
Halt, 107 
History, 1 
If, 94 
If then Else, 96 
Insert, 47 
Length, 36 
Numerics, 24 
Operators, 15 
Parameters, 111 
Pos, 36 
Procedures, 110 
Program structure, 7 
Random function, 28 
Real data type, 25 
Records, 80 
Repeat loops, 101 
Repeat Until, 106 
Repeat While, 105 
Return, 110 
Round function, 26 
Semicolon, ending statements with, 8 
Sets, 66 
Str function, 30 
Strings, 32 
Subranges, 21 
Trunc function, 28 
UCSD Pascal Handbook, 2 
Units, 153 
Value parameters, 111 
Variant Record, 91 

Pascal case, 14 

 169



Pascal’s Copy(Source,Index,Size) function, 39 
Power function, numeric, 30 
Predicates, 61 
Print() statement, 5 
Private access level, 155 
Protocols, 156 
Public access level, 154 

R 
Random boolean, 29 
Random numbers, 28 
Range 

Closed ('x...y'), 21 
Comparing, 23 
Contains, 23 
Half-open (x..<y), 21 
IsEmpty, 23 
Lowerbound, 23 
Methods, 23 
One-sided ('x...') or ('...y'), 22 
Overlap, 23 
Upperbound, 23 
Use in iteration, 102 
Used in loops, 22 

Read Eval Print Loop (REPL), 3 
Records and Structures, 80 
Reference types, 124 
Remainder, 18 
Repeat Loops, 101 
Repeat while loops, 105 

 170



Rounding numbers, 26 

S 
Sandboxing, 132 
Scope, de!nition, 8 
Self, 124, 150 
Semicolon, ending statements with, 8 
Set 

Asymmetric di#erence, 69 
Declaration, 67 
De!nition, 67 
Intersection, 69 
Iteration, 69 
Membership tests, 70 
Operations, 68 
Sorting, 70 
Subtract, 69 
Union, 69 

Sets, 66 
Square root of a number, 29 
Static Keyword, 157 
Stride, 104 
string, 33 
String Character Indices, 38 
String Comparison, 45 
String Concatenation, 43 
String Insertion and Removal, 47 
String Interpolation, 46 
String Length, 37 
String Literals, 34 

 171



String Replace, 51 
String Search, 50 
String Split, 52 
Strings 

Changing case, 50 
Comparison, 45 
Concatenation, 43 
Embedded special characters, 35 
Extended sepecial characters, 177 
Extending Swift Strings, 37 
Indices, 38 
Initialization, 33 
Initialization from a !le, 34 
Inserting characters, 47 
Length, 37 
Literals, 34 
Multiline literals, 34 
NSString.CompareOptions, 52 
Removing characters, 48 
Replacing characters, 51 
Searching, 50 
Splitting, 52 
Substrings, 53 
Testing if empty, 35 

Strings and characters, 32 
StringStrings 

Interpolation, 46 
Struct 

Computed properties, 84 
Create new instance, 82 
Declaration, 81 
Default property values, 83 

 172



De!ning new, 82 
Embedded functions. See Instance methods 
Getter and setter methods, 84 
Getting and setting property values, 83 
Initializing properties, 83 
Instance methods, 85 
Properties, 83 
Self reference, 86 

Subscript syntax, 58, 72, 73, 74 
Substrings, 53 
Swift 

Bridged methods, 36 
Brief history, 1 
Case sensitivity, 9 
Code examples, 4 
Let keyword, 10 
Online documentation, 6 
Playgrounds app, 3 
Print() statement, 5 
Program structure, 7 
Swift.org, 6 
The Swift Programming Language Reference, 6 

Swift Playgrounds App, 3 
Switch default case, 99 
Switch Statement, 99 

T 
Throw Statement, 143 
Throws keyword, 143 
Truncating Numbers, 28 
Try Statement, 146 

 173



Try!, 145 
Try?, 146 
Tuple, 120, 121, 122, 123, 146, 147, 148 
Tuple De!nition, 121 
Tuples, 121, 123 
Tuples in error handling, 146 
Type alias, 93 
Type annotation, 11 
Type Conversion 

Numbers, 26 
Type inference, 12 

U 
Uint, 25 
Unicode, 13, 32, 33, 38 
Universal Remote Locator. See URL 
Unwrapping optionals, 74 
UpperCamelCase, 82 
URL 

Accessing components, 134 
As !le reference, 130 
Components, 130 
Declaration, 131 
De!nition, 130 
Determing if !le is reachable, 134 
Methods, 133 
Obtaining !le extension from, 134 
Obtaining !le name from, 134 
Referencing relative to Home directory, 133 
Standardized, 133 

 174



V 
Value types, 86, 124 
Variables, 12 
Variadic parameter, 45, 118 
Void, 120 

W 
Wirth, Nicklaus, 1 

 175



 176



About the Author 

 
Henry Lowe MD, FACMI is Emeritus Professor at Stanford 
University and a Board-Certi!ed Internal 
Medicine physician. From 2002 until 2013 Dr. Lowe was 
Chief Information O&cer and Senior Associate Dean for 
Information Resources and Technology at Stanford 
University School of Medicine. He was also the founding 
Director of Stanford’s Center for Clinical Informatics. He 
has extensive experience in clinical informatics research 
and development. Dr. Lowe is an elected Fellow of the 
American College of Medical Informatics (ACMI) and  
the Founder of Ascriva Health Informatics, a company 
based in Silicon Valley, California.

 177


